
MERL – A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

Ray Casting Architectures for Volume
Visualization

Harvey Ray�, Hanspeter Pfistery, Deborah Silverz, Todd A. Cookx

TR-99-17 April 1999

Abstract

Real-time visualization of large volume datasets demands high performance compu-
tation, pushing the storage, processing, and data communication requirements to the
limits of current technology. General purpose parallel processors have been used to vi-
sualize moderate size datasets at interactive frame rates; however, the cost and size of
these supercomputers inhibits the widespread use for real-time visualization. This paper
surveys several special purpose architectures that seek to render volumes at interactive
rates. These specialized visualization accelerators have cost, performance, and size ad-
vantages over parallel processors. All architectures implement ray casting using parallel
and pipelined hardware. We introduce a new metric that normalizes performance to
compare these architectures. The architectures included in this survey are VOGUE,
VIRIM, Array Based Ray Casting, EM-Cube, and VIZARD II. We also discuss future
applications of special purpose accelerators.

To appear in IEEE Transactions on Visualization and Computer Graphics

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Technology Center America; an acknowledgment of the authors and individual contributions to the work;
and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1999
201 Broadway, Cambridge, Massachusetts 02139

�Harvey Ray is a Ph.D. student at Rutgers State University, Email: haray@caip.rutgers.edu
yHanspeter Pfister is with Mitsubishi Electric Research, Email: pfister@merl.com
zDeborah Silver is an associate professor at Rutgers State University, Email: silver@caip.rutgers.edu
xTodd Cook is a research and development engineer at Improv System Inc., Email: toddc@improvsys.com



Publication History:–

1. First printing, TR-99-17, April 1999



1

1 Introduction

Volume visualization is an important tool to view and analyze large amounts of data from various scientific
disciplines. It has numerous applications in areas such as biomedicine, geophysics, computational fluid
dynamics, finite element models, and computational chemistry. Numerical simulations and sampling devices
such as magnetic resonance imaging (MRI), computed tomography (CT), satellite imaging, and sonar are
common sources of large 3D datasets. These datasets are generally anywhere from 1283 to 10243 and may
be non-symmetric (i.e., 1024� 1024� 512).

Volume rendering involves the projection of a volume dataset onto a 2D image plane. From Figure 1 we
see that a volume dataset is organized as a 3D array of volume elements, or voxels1.

Voxels represent various physical characteristics, such as density, temperature, velocity, and pressure.
Other measurements, such as area and volume, can be extracted from the volume datasets. Volume data may
contain more than a hundred million voxel values requiring a large amount of storage. In Figure 1, the voxels
are uniform in size and regularly spaced on a rectilinear grid. Other types of volume data can be classified into
curvilinear grids, which can be thought of as resulting from a warping of a regular grid, and unstructured grids,
which consist of arbitrary shaped cells. This paper presents a survey of recent custom volume rendering

Figure 1:Volume dataset.

architectures that seek to achieve interactive volume rendering for rectilinear datasets. A survey of other
methods used to achieve real time volume rendering is presented in [1]. The motivation for custom volume
renderers is discussed in the next section. Several other custom architectures exist [2, 3, 4, 5, 6, 7, 8, 9] but
were not presented because they are either related to the architectures presented here or are not considered
to be recent. Section 3 presents three parallel volume rendering algorithms that are implemented by the
architectures in this paper. Major components of a volume rendering system are discussed in Section 4.
Five specialized volume rendering architectures are surveyed in Section 5. A new metric is introduced in
Section 6 to compare each architecture. A comparison of the surveyed architectures is presented in Section 7
and a discussion is presented in section 8. Future trends for specialized rendering architectures are presented
in Section 9.

2 Need for Custom Visualization Architectures

A real-time volume rendering system is important for the following reasons [10]: 1) to visualize rapidly
changing 4D (spatial-temporal) datasets, 2) for real-time exploration of 3D datasets (e.g., virtual reality),
3) for interactive manipulation of visualization parameters (e.g., classification), and 4) interactive volume
graphics [11]. As the sampling rates of devices become faster, it will be possible to generate several 3D
datasets at interactive rates; real-time volume rendering is required to visualize these dynamically changing

1Note, the term voxel has been used to refer to point samples and cubic volume elements. The papers surveyed here use both
definitions for illustration purposes. Therefore, figures in this paper will use a point sample representation or a unit volume representation
of a voxel as necessary.

MERL-TR-99-17 April 1999



2

datasets (e.g., for 3D ultrasound [12, 13]). It is often necessary to view the dataset from continuously changing
positions to better understand the data being visualized; real-time volume rendering will enhance visual
depth cues through motion and occlusion as the dataset is viewed from varying positions. Classification is
important in correctly visualizing the dataset by configuring object properties (opacity, color, etc.) based
on voxel values; classification is an iterative process which will benefit from real-time volume rendering;
thus, scientists will be able to interactively manipulate opacity and color mappings. Volume graphics is an
emerging area of research that produces synthetic datasets [11]. Volume graphics challenges the way 3D
graphics is currently implemented. Traditional 3D graphics use polygonal meshes to model objects and these
meshes are scan-converted into pixels inside the frame buffer. Alternatively, volume graphics models objects
as a 3D discrete set of point samples (voxels). These voxels comprise the 3D dataset. The dataset is rendered
using standard volume visualization techniques.

Real-time visualization of large 3D datasets places stringent computational demands on modern work-
stations, especially on the memory system. Table 1 estimates the memory bandwidth to render different size
datasets at30Hz. It is assumed that the volume rendering algorithm accesses each voxel once per projection.
The required memory bandwidth can not be sustained on most modern workstations and personal comput-
ers. The dataset must be partitioned among multiple memory modules to achieve the desired bandwidth and
parallel processing must be used.

Table 1: Estimated memory bandwidth for real-time volume rendering.

Dataset Size Frame Rate (Hz) Memory Bandwidth
1283 � 16 30 120 MB/s
2563 � 16 30 960 MB/s
5123 � 16 30 7.5 GB/s
10243 � 16 30 60 GB/s

Massively parallel processors and multiprocessors architectures [14, 15, 16, 17, 18, 19] have achieved
image generation rates up to30Hz on moderate sized datasets using algorithmic optimizations; however, the
cost of these machines is prohibitive. In addition, the algorithmic optimizations are usually dataset dependent.
Custom architectures have the potential to match or exceed the performance of other interactive visualization
solutions at a lower cost and smaller size. Performance, cost, and size benefits are necessary for a desktop
interactive visualization system.

3 Parallel Ray Casting

Volume rendering involves the direct projection of the entire 3D dataset onto a 2D display. Volume rendering
algorithms can simultaneously reveal multiple surfaces, amorphous structures, and other internal structures
of a 3D dataset [20]. These algorithms can be divided into two categories: forward-projection and backward-
projection. Forward-projection algorithms iterate over the dataset during the rendering process projecting
voxels onto the image plane. A common forward-projection algorithm is splatting [21]. Backward-projection
algorithms iterate over the image plane during the rendering process re-sampling the dataset at evenly spaced
intervals along each viewing ray. In general, ray casting algorithms traverse the dataset in a more random
manner. All architectures surveyed in this paper implement ray casting, a common backward-projection
algorithm [22]. The ray casting algorithm is capable of producing high-quality images and a large degree of
parallelism can be exploited from the algorithm.

In ray casting, rays are cast into the dataset. Each ray originates at the viewing (eye) position, penetrates
a pixel in the image plane (screen), and passes through the dataset. At evenly spaced intervals along the ray,
sample values are computed using interpolation. The sample values are mapped to display properties such
as opacity and color. A local gradient is combined with a local illumination model at each sample point to

MERL-TR-99-17 April 1999



3

provide realistic shading of the object. Final pixel values are found by compositing color and opacity values
along a ray. Composition models the physical reflection and absorption of light.

Because of the high computational requirements of volume rendering, the data needs to be processed in a
pipelined and parallel manner. Parallel ray casting algorithms use one of the following processing strategies:
object order, image order, or hybrid order [23]. This division describes the manner in which a dataset is
processed. Figure 2 illustrates the three variations.

Im
age

Plane

Im
age

Plane

Im
age

Plane

Intermediate Plane

A) Image order B) Object order C) Hybrid order

Figure 2:Ray casting categories.

A dataset in Figure 2 is organized as a set of parallel slices. Image order algorithms cast rays through the
image plane and re-sample at locations along the ray (Figure 2A). They offer flexibility for algorithmic opti-
mizations, but accessing the volume memory in a non-predictable manner significantly slows down memory
performance. Object order algorithms require that the dataset be re-sampled so that the slices are aligned with
the view direction (Figure 2B). A major advantage of object order algorithms is that accesses to the volume
memory are predictable, thereby, leading to efficient memory bandwidth utilization. Hybrid order algorithms
project the dataset to the face of the dataset most parallel to the image plane. This also allows for predictable
memory accesses to the volume data where no more than one sample is taken per voxel. The intermediate 2D
image is warped into the final image (Figure 2C). The shear-warp algorithm is an example of a hybrid order
algorithm [24]. A summary of implementation tradeoffs for each parallel scheme is shown in Table 2.

Table 2: Tradeoffs for different parallelization methods.

Image order Object order Hybrid order
Advantages - Easy to implement - Regular memory access - Merge benefits of

algorithmic optimizations patterns image order and object
(e.g., early-ray termination) order algorithms

Disadvantages - ”Random” memory access - Difficult to implement - Perspective projections
patterns algorithmic optimizations adversely affect performance

- Non-uniform mapping of - Additional 2D image
ray samples to voxels warp required

4 Components of a Ray Casting System

The following components are needed for any ray casting implementation:

Memory system provides the necessary voxel values at a rate which ultimately dictates the performance of
the architecture.

Ray-path calculation determines the voxels that are penetrated by a given ray; it is tightly coupled with the
organization of the memory system.

MERL-TR-99-17 April 1999



4

Interpolation estimates the value at a re-sample location using a small neighborhood of voxel values.

Gradient estimation estimates a surface normal using a neighborhood of voxels surrounding the re-sample
location.

Classification maps interpolated sample values and the estimated surface normal to a color and opacity.

Shading uses gradient and classification information to compute a color that takes into account the interac-
tion of light on the estimated surfaces in the dataset.

Composition uses shaded color values and opacity to compute a final pixel color for display.

4.1 Memory System

The memory system is the most important component of a visualization architecture. The memory system
contains the dataset and is responsible for supplying the computational units with voxel values at a high
bandwidth to support the target frame rate. Since the dataset will be visualized from various view positions,
the throughput of the memory system should be as view independent as possible. Regardless of the parallel
processing strategy, each ray casting algorithm requires simultaneous access to multiple voxels. Ideally, the
memory system provides these voxels in a conflict-free manner; otherwise, the overall system may suffer
performance degradation.

The architectures surveyed in this paper use four memory partitioning schemes shown in Figure 3 to
achieve a high memory throughput. Sub-block partitioning (Figure 3A) divides the dataset into smaller

Figure 3:Common memory organization schemes.

volumes. Each sub-block is assigned to a different memory module. Orthogonal slice partitioning (Figure 3B)
assigns each slice inside the dataset to a memory module. Each slice is perpendicular to one axis of the
dataset. In this partitioning scheme, memory throughput is maximized for two of the three orthogonal viewing
directions. The eight-way interleaved memory system (Figure 3C) assigns each voxel in a2 � 2 � 2 block
to separate memory banks. The eight-way interleaved memory partition is limited to eight parallel memory
accesses. As a result, it can be combined with sub-block partitioning when additional parallelism is necessary.
The skewed (non-orthogonal) slice partitioning scheme (Figure 3D) assigns slices that make a45� angle
with each axis of the dataset to memory modules. In this partitioning scheme, the memory throughput is
maximized for the three orthogonal viewing directions.

MERL-TR-99-17 April 1999



5

The maximum performance obtained by a volume rendering architecture is primarily determined by the
degree of parallelism and the memory technology used. Recent memory devices use pipelining to accelerate
linear accesses. Synchronous memories, such as Synchronous DRAM (SDRAM), can sustain memory ac-
cesses at150MHz. This is a three-fold speed up over previous alternatives. More recently, Rambus defined a
high-speed interface that will allow sustainable bandwidths up to 800 MB/s using an 8-bit bus. Using a wider
16-bit bus (Direct Rambus), these devices are able to sustain 1.6 GB/s data throughput [25]. These advanced
memories can potentially enhance performance for any given architecture. A metric that measures the ability
of a volume rendering architecture to utilize available memory bandwidth is presented in Section 6.

4.2 Ray-Path Calculation

Calculating ray-voxel intersections is tightly coupled with the memory system design and is related to the type
of ray casting algorithm used. The appropriate memory addresses for each voxel that a ray penetrates must
be computed. These addresses are calculated by constructing a line (ray) between the viewing position and a
pixel on the image plane and extending the line (ray) through the dataset. Based on the processing strategies
from the previous section, it may be necessary to calculate a substantial number of memory addresses in
parallel. Look-up tables (or templates) have been used to reduce the computation involved in calculating ray
paths through the dataset [26]. For parallel projections and hybrid order architectures, templates only need to
be generated once per projection because all rays have the same slope.

4.3 Interpolation

Estimating the sample value requires evaluation of the trilinear interpolation equation:

S(i; j; k) = P000(1� i)(1� j)(1� k)
+ P100i(1� j)(1� k) + P010(1� i)j(1� k)
+ P110ij(1� k) + P001(1� i)(1� j)k
+ P101i(1� j)k + P011(1� i)jk + P111ijk

(1)

i, j, andk are fractional offsets of the sample position in thex, y, andz directions, respectively. These
variables are between0 and1. Pabc is a voxel whose relative position in a2� 2� 2 neighborhood of voxels
is (a; b; c). a, b, andc are the least significant bit of thex, y, andz sample position, respectively. From
Equation 1, we see that a total of 24 multiplications are necessary and eight voxel values are required to
compute each re-sample location. The number of multiplications can be reduced by approximately one-half
if factors are re-used. If we assume that each1 � 1� 1 unit volume in a512� 512� 512 dataset contains
one re-sample location per projection, then more than 1.5 billion multiplications would be necessary for each
projection. Multiple projections are needed per second for interactive projection rates, requiring an enormous
amount of computational power. As few as eight multiplications are necessary if the interpolation weights are
stored in a look-up table. Higher-order interpolation can be used to improve image-quality but it is typically
not done in hardware because of its computational cost.

4.4 Gradient Estimation

The next step is the determination of gradients to approximate surface normals for classification and shading.
x-, y-, andz-gradients may be computed using central differences:

Gx = S(i+1;j;k)�S(i�1;j;k)
�x

Gy = S(i;j+1;k)�S(i;j�1;k)
�y

Gz = S(i;j;k+1)�S(i;j;k�1)
�z

(2)

MERL-TR-99-17 April 1999



6

S(i; j; k) is the interpolated sample at the location(i; j; k) inside the dataset.�x, �y, and�z is the spacing
between samples inx, y, andz directions, respectively. The costly divisions are usually avoided because
of the regular spacing between voxels inside the dataset. Two re-sample locations adjacent to the sample
location in each direction are required to compute the gradient using central differences. Some algorithms use
a larger neighborhood of voxels to generate images that appear smoother and/or to reduce temporal aliasing.
In addition to the gradient vector components, the gradient magnitude and the normalized gradient vector
may be required. Gradients can also be taken at neighboring voxels and interpolated to yield the gradient at
the re-sample location.

In practice, several gradient estimation schemes exist [27, 20, 28, 29, 30]. A comprehensive consideration
of these methods is beyond the scope of this survey. In general, high-quality gradient estimation requires
additional computation and memory bandwidth (or on-chip storage) that may affect performance and cost.

4.5 Classification

Classification maps a color and opacity to sample values. Opacity values range from0 (transparent) to1:0
(opaque) [22]. Classification is typically implemented in hardware using look-up tables (LUTs). These LUTs
are typically addressed by sample value and/or gradient magnitude, and they output sample opacity and color.
It is desirable to be able to modify the information in these LUTs during the visualization process in real-time.
If the architecture processes multiple re-sample locations in parallel, these LUTs must be duplicated to avoid
contention.

4.6 Shading

The Phong shading algorithm [31], or variants, are often used in the shading subsystems of volume rendering
architectures. This algorithm requires gradients, light and reflection vectors to calculate the shaded color
for each re-sample location. The algorithm involves computationally expensive division, multiplication, and
exponentiation that must be implemented in hardware. In practice, the shading algorithm is implemented
in either arithmetic units for accuracy or reflectance LUTs for flexibility [32]. For color images, the Phong
shading models may be applied to the red, green, and blue components. Also, additional computation may
be necessary if multiple light sources are supported.

4.7 Compositing

The composition system is responsible for summing up color and opacity contributions from re-sample lo-
cations along a ray into a final pixel color for display [33]. The front-to-back formulation for compositing
is:

CAcc = (1:0� �Acc) � Csample + CAcc

�Acc = (1:0� �Acc) � �sample + �Acc
(3)

CAcc is the accumulated color,�Acc is the accumulated opacity,Csample is the samples color, and�sample

is the samples opacity. Two multiplies are needed to composite each re-sample location. Compositing in a
front-to-back order allows for early ray termination if a desired opacity threshold has been reached. Back-to-
front composition can be utilized to simplify the calculation; however, early ray termination is not possible.
Color information produced from the compositing system is stored into a frame buffer for display.

5 Architecture Survey

This section presents five special purpose volume rendering architectures. A description of each architecture
is given along with its performance. The following architectures are surveyed, in chronological order of their

MERL-TR-99-17 April 1999



7

development: VOGUE, VIRIM, Array Based Ray Casting, EM-Cube, and VIZARD II. Each figure in this
section were redrawn from their original publication.

5.1 VOGUE

The VOGUE architecture [34, 35] was developed at the University of T¨ubingen, Germany. One rendering
engine provides high-quality, volume-rendered images with multiple light sources using four custom VLSI
chips. A block diagram of the architecture is shown in Figure 4. The main goals of VOGUE are flexibility

Figure 4:VOGUE architecture.

and compactness. VOGUE is capable of three rendering modes based on the gradient estimation method: a
fast 8-voxel gradient, a slower intermediate quality 32-voxel gradient, and a higher quality 56-voxel gradi-
ent. VOGUE hardware consist of an Address SeQuencer (ASQ) for memory addressing, a volume memory
(VoluMem) for dataset storage, a Reconstructor EXtractor (REX) for interpolation, a COLOSSUS unit for
shading, and a COMET unit for composition. VOGUE implements an unrestricted Phong illumination model
in addition to depth cueing.

5.1.1 Description

The Volume Memory (VoluMem) is organized as an eight-way interleaved memory system (see Figure 3C)
which allows eight voxels surrounding a trilinear re-sample location to be retrieved in parallel.

The ASQ unit provides necessary addresses for the VoluMem. It generates addresses for the voxels
involved in re-sampling and gradient estimation. A ray’s initial position and incremental values to the next
re-sample location are computed by the host computer and passed to the ASQ where they are incremented to
compute the address of the eight voxels surrounding the re-sample location.

The REX unit performs trilinear interpolation using the eight voxels from VoluMem to compute the re-
sampled value. The REX contains three stages of linear interpolators. Adjacent voxels from the trilinear
interpolation neighborhood are used in linear interpolations to compute edge-values, then pairs of edge-
values are used in linear interpolations to compute face-values, and the last linear interpolation uses a pair
of opposite face-values to compute the final sample value. The REX is a pipelined unit and produces one
interpolation value per clock cycle.

In addition to interpolation, the REX unit also performs gradient calculation. Gradient calculation requires
1 memory accesses for the fastest gradient mode (8-voxel gradient), 4 memory accesses for the intermediate
mode (32-voxel gradient), and 7 memory accesses for the highest quality gradient mode (56-voxel gradient).
In the fastest gradient mode, opposite face-values computed during trilinear interpolation are used to compute
gradients. The higher quality gradient modes require additional voxels and interpolation. The REX unit can

MERL-TR-99-17 April 1999



8

produce one gradient vector and magnitude per clock cycle. The REX unit contains three pipelined square
units and one square root unit to compute the gradient magnitude.

Classification information is stored in three LUTs: specular coefficient, color, and opacity. These tables
are indexed using the sample value, gradient, and gradient magnitude. These values are subsequently used
by the shading unit (COLOSSUS) and compositing unit (COMET).

The COLOSSUS shading unit implements the unrestricted Phong illumination model and depth cueing.
The specular coefficient from the LUT along with the gradient vector, light vector, and ambient coefficient are
passed to the COLOSSUS chip. The COLOSSUS chip internally converts operands to logarithms to reduce
multiplication and division to simple addition and subtraction, respectively. The costly exponentiation opera-
tion required by the Phong illumination model is reduced to a multiply; however, fast logarithmic converters
are necessary. These units are pipelined to achieve the desired system performance.

Shaded samples are composited in the COMET chip. The COMET chip requires an opacity, from a LUT,
and color values from the COLOSSUS chip. These values are composited into a final pixel color that is
passed to the frame buffer.

5.1.2 Performance

Estimated performance of one VOGUE module, containing the four VLSI units (ASQ, REX, COLOSSUS,
and COMET), is2:5 frames/second for2563 datasets using the fastest rendering mode. For higher perfor-
mance, several rendering modules are connected to other modules in a ring network. To achieve larger mem-
ory throughput, a fully-parallel implementation uses sub-block partitioning to globally partition the dataset.
Each sub-block is locally partitioned using the eight-way memory interleaving scheme and is stored into the
VoluMem of a given rendering module. Boundary voxels are replicated among adjacent rendering modules
to enhance performance.

VOGUE is capable of perspective projection and is able to utilize early ray termination. The estimated
performance using the fastest 1-access gradient mode is20Hz using eight modules for2563 datasets and us-
ing 64modules for5123 datasets. VOGUE’s highest quality gradient mode improves image-quality, however,
performance is lowered to2 frames/second.

5.2 VIRIM

The VIRIM architecture has been developed and assembled at the University of Mannheim [36] to achieve
real-time visualization on moderate sized datasets(256 � 256 � 128) with high image quality. VIRIM
is an object order ray casting engine that uses the Heidelberg raytracing algorithm [37] discussed below.
The VIRIM architecture is shown in Figure 5. It consist of a geometry unit and a ray casting unit. The
geometry unit is responsible for interpolation and gradient calculation; the ray casting unit is responsible for
implementing the actual ray casting algorithm.

5.2.1 Description

The rotation of the dataset occurs on dedicated rotation hardware called the Rotator Board (geometry unit in
Figure 5). The Rotator Board aligns the dataset with the viewing position. The Rotator Board consists of the
volume memory, a geometry processor, an interpolation processor, and a gradient processor.

The dataset is stored in an eight-way interleaved memory system. The dataset is rotated using backward
mapping from the re-sample position and a weighted interpolation mask on an eight voxel neighborhood.
Arbitrary (e.g., Gaussian) interpolation weights can be used in the 8-voxel neighborhood instead of trilinear
interpolation. The geometry processor generates the addresses for the eight memory banks using a rotation
matrix. Unlike other architectures, VIRIM does an interpolation on classified density values. The mappings
are stored in eight LUTs that can be freely modified.

MERL-TR-99-17 April 1999



9

X-, Y- Gradient Processor

Interpolation Tree

Ray-casting
Unit

DSPs

Board Master

DSPs

Board Master

Density LUT

2 Independent
Banks of 8 Units Each

Interpolation
Weight Memory

Address Generator

Geometry
Unit

Host Bus

Figure 5:VIRIM architecture.

A modified 2D Sobel filter is used to estimate the X and Y components of the gradient vector in the
re-sampled coordinate system. Because of this, the gradient is only two-dimensional and view dependent.
The output of the rotator board are the density and gradient values for a sample location. These components
are transferred to the Digital Signal Processor (DSP) boards (ray casting unit in Figure 5) using a specialized
bus and stored into first-in first-out memories (FIFOs). The geometry units are much faster than the DSPs;
therefore, the FIFOs are required to de-couple speed differences between the two units.

The DSP board implements ray casting with the Heidelberg illumination model. In the Heidelberg model,
the dataset is rotated such that viewer looks along a major axis. Two light sources enter the volume. One
light source is along the direction of the viewer and the other light source is 45� from the first light source.
Light intensity is calculated slice-by-slice, and the final illumination value per sample is generated by the
summation of all light intensity emitted in the viewers direction. The Heidelberg raytracing algorithm can
account for reflection, absorption, emission of light, and is capable of producing shadows.

The DSP board contains eight DSP chips and a CPU. Floating point operations for the shading and
visualization algorithm are performed by the DSPs. The DSPs are programmable and provide flexibility for
the architecture to implement different volume rendering and shading algorithms.

5.2.2 Performance

VIRIM is capable of producing shadows and supports perspective projections. One VIRIM module with
four boards has been assembled and achieves2:5Hz frame rates for256� 256� 128 datasets. To achieve
interactive frame rates, multiple rendering modules have to be used; however, dataset duplication is required.
Four modules (16 boards) are estimated to achieve10Hz for the same dataset size, and eight modules (32
boards) are estimated to achieve10Hz for 2563 datasets [23].

5.3 Array Based Ray Casting

The Array Based Ray Casting engine developed at the University of New South Wales [38] is an object order
ray casting architecture. This architecture consists of two parallel pipelined arrays used to rotate the dataset
and to cast rays, as illustrated in Figure 6. These rotation arrays are connected betweenn memory modules
and1:5n rendering pipelines,n is the resolution of the dataset. In the second array, intersections with voxels
are determined by using nearest neighbor or zero order interpolation. Each rendering pipeline performs

MERL-TR-99-17 April 1999



10

Warp Array
Double
Buffered

Input
Memory

Ray Array 1.5n
Rendering
Pipelines

Frame
Buffer

Input
Stream

Scanline 0

Scanline 1.5n

Slice Shear Ray CastingDataset

x

z
y

Figure 6:Array Based Ray Casting architecture.

shading and composition for a given scanline. In addition, the system is composed of a double-buffered input
memory, memory swapping array, and a frame buffer.

5.3.1 Description

The volume dataset is stored in a double-bufferedvolume memory that allows the simultaneous loading of one
dataset and visualization of another. The memory system uses orthogonal slice partitioning (see Figure 3B).
The dataset is stored in memory in a view dependent manner using coordinate swapping. Using a spherical
coordinate system, view positions are classified as being in one of eight primary octant regions. As the dataset
is loaded, coordinate swapping occurs based on the view position to allow conflict-free access to beams. Note
that coordinate swapping performs a partial rotation. Limited rotations about the X- and Y- axis occurs in the
Warp Array and Ray Array, respectively. These three partial rotations allow general rotation of the dataset.

Vertical beams, indicated by similar shaded voxels in Figure 6, are loaded into the Warp Array in one clock
cycle. The Warp Array rotates the volume by�45� around the X-axis by shearing slices in Y. The shear is
accomplished in the Warp Array by shifting beams of voxels based on a comparison of the row coordinate
and the beam’s rotated Y-coordinate. The first column of the Warp Array computes these Y-coordinates for
each voxel, and the remaining columns contain simple processing elements. These elements perform three
basic functions: shift-right, shift-right-up, and shift-right-down. The rows in both the Warp Array and Ray
Array correspond to a discrete Y-coordinate. However, explicit Y-coordinate information is only stored in the
Warp Array.

Voxels in the rightmost column of the Warp Array proceed to adjacent processing elements in the leftmost
column of the Ray Array. The Ray Array casts parallel rays into the sheared YZ-slices. As indicated in
Figure 6, a row inside the Ray Array corresponds to a scanline of rays. Initializers compute X- and Z-
coordinates for voxels during ray casting. Each ray’s initial coordinate and increment vector is shifted into
place inside the Ray Array before ray casting. The processing elements in the Ray Array implement a
Compare-and-Shift-Right function. If a voxels coordinate matches a ray’s current coordinate, a flag is set
which proceeds through the remainder of the array with the voxel and coordinate data. The Ray Array
implements nearest neighbor or zero order interpolation.

A one dimensional array of rendering pipelines classifies, shades, and composites the voxels along the
discrete rays. To estimate gradients, each element in the Ray Arrays has additional registers to buffer voxel
information. Voxels traverse a row inside the Ray Array three times. A3 � 3 box filter is used in the

MERL-TR-99-17 April 1999



11

Rendering Pipelines to estimated gradients. The gradient estimation and shading algorithm uses a full 26-
voxel neighborhood and creates smoothly shaded images [39].

5.3.2 Performance

If n is the dimension of the volume data, the size of the Warp Array and Ray Array are1:5n � n and
1:5n�1:5n, respectively. For2563 datasets, this corresponds to approximately 212,992 processing elements.
An additional column in each array contains the coordinate initializers. The architecture also contains1:5n
rendering pipelines. The Warp Array for this dataset dimension is estimated to fit inside a5 � 5 array of
FPGAs. Processing elements in the Ray Array are larger than those in the Warp Array and require more
hardware. However, a smaller Ray Array (i.e., with fewer columns) can be used by time-multiplexing the
Ray Array and stalling the Warp Array, thereby reducing throughput.

This architecture only supports parallel rendering and is capable of15Hz frame rates for2563 datasets
sharing the Ray Array 10 times. The architecture has undergone several changes since its publication and is
now called VIZAR [40].

5.4 EM-Cube

EM-Cube is a commercial version of the high-performance Cube-4 [8, 10, 41] volume rendering architecture
that was originally developed at the State University of New York at Stony Brook. EM-Cube is currently
under development at Mitsubishi Electric Research Laboratory [42]. The Cube family of architectures are
characterized by memory skewing. EM-Cube is a highly parallel architecture based on the hybrid order ray
casting algorithm shown in Figure 2C. Rays are sent into the dataset from each pixel on the base plane, which
is co-planar to the face of the dataset that is most parallel to the image plane. Because the image plane is
typically at some angle to the base-plane, the resulting base-plane image is 2D warped onto the image plane.

The main advantage of this algorithm is that voxels can be read and processed in planes of voxels (so
called slices) that are parallel to the base-plane [10]. Within a slice, voxels are read from memory a beam
of voxels at a time, in top to bottom order. This leads to regular, object order data access. The EM-Cube
architecture utilizes memory skewing [43] on a block granularity for conflict-free beam access.

5.4.1 Description

EM-Cube will be implemented as a PCI card for Windows NT computers. The card will contain one volume
rendering ASIC, 32 Mbytes of volume memory, and 16 Mbytes of local pixel storage. The warping and
display of the final image will be done on an off-the-shelf 3D graphics card with 2D texture mapping. The
EM-Cube volume rendering ASIC, shown in Figure 7, contains eight identical rendering pipelines, arranged
side by side, and interfaces to voxel memory, pixel memory, and the PCI bus. Each pipeline communicates

Interpolation

Gradient
Estimation

Shading &
Classification

Compositing

P
ipeline 0

P
ipeline 1

P
ipeline 2

P
ipeline 3

P
ipeline 4

P
ipeline 5

P
ipeline 6

P
ipeline 7

Voxel Memory Interface

Pixel Memory Interface

SDRAM SDRAM SDRAM SDRAM

SDRAM SDRAM SDRAM SDRAM

P
C

I Interface
E

M
-C

ube
A

SIC

Slice B
uffers

Figure 7: EM-Cube architecture with eight identical ray casting pipelines.

MERL-TR-99-17 April 1999



12

with voxel and pixel memory and the two neighboring pipelines. Pipelines on the far left and right are
connected to each other in a wrap-around fashion (indicated by grey arrows in Figure 7). A main characteristic
of EM-Cube is that each voxel is read from volume memory exactly once per frame. Voxels and intermediate
results are cached in so called slice buffers so that they become available for calculations precisely when
needed.

EM-Cube is a parallel projection engine with multiple rendering pipelines. Each pipeline implements the
ray casting algorithm. Samples along each ray are calculated using trilinear interpolation. A 3D gradient is
computed using central differences between trilinear samples. The gradient is used in the shader stage, which
computes the sample illumination according to the unrestricted Phong lighting model using a reflectance
LUT [32]. Look-up tables in the classification stage assign color and opacity to each sample point. Finally,
the illuminated samples are accumulated into base plane pixels using front-to-back compositing.

Volume memory is organized as four 64-Mbit 16-bit wide SDRAMs for 32 Mbytes of volume storage.
The volume data is stored as a2 � 2 � 2 blocks of neighboring voxels. Miniblocks are read and written in
bursts of eight voxels using the fast burst mode of SDRAMs. In addition, EM-Cube uses linear skewing of
these blocks. Skewing guarantees that the rendering pipelines always have access to four adjacent miniblocks
in any of the three slice orientations.

5.4.2 Performance

EM-Cube is a parallel ray casting engine that implements a hybrid order algorithm; however, EM-Cube
does not support perspective projections. Each of the four SDRAMs provides burst-mode access at up to
133MHz, for a sustained memory bandwidth of4 � 133 � 106 = 533 million 16-bit voxels per second.
Each rendering pipeline operates at66MHz and can accept a new voxel from its SDRAM memory every
cycle. Eight pipelines operating in parallel can process8� 66� 106 or approximately 533 million samples
per second. This is sufficient to render2563 volumes at 30 frames per second.

5.5 VIZARD II

The VIZARD II architecture is being developed at the University of T¨ubingen to bring interactive ray cast-
ing into the realm of desktop computers [44]. This is the second generation of VIZARD systems [45, 46].
These image order architectures are characterized by methods to reduce memory bandwidth requirements for
interactive visualization. While VIZARD uses a pre-shaded and pre-classified compressed dataset, VIZARD
II only preprocesses gradients that are stored into a quantized gradient table. Using central differences as
the underlying gradient filter, preprocessing the gradient filter requires only a few seconds and is only per-
formed once per dataset. Gradient quantization potentially allows VIZARD II to implement global gradients.
VIZARD II was designed to interface to a standard PC system using the PCI bus. The dataset is stored in
four interleaved memory banks along with a pre-computed gradient index, segmentation index, and gradient
magnitude for each voxel. The combination of pre-computed gradients, caching, and early ray termination
reduces the bandwidth requirements of the memory system. Added flexibility is obtained by using a DSP and
FPGAs as the implementation technology. This allows the VIZARD II card to perform other visualization
task such as reconstruction, filtering, and segmentation.

5.5.1 Description

The VIZARD II architecture is illustrated in Figure 8. VIZARD II consists of four functional blocks: Control
Unit, Memory Unit, Trilinear Interpolation Unit, and Shading/Compositing Unit. The Control Unit is deter-
mines intersections of the rays with the dataset and cut planes. The Memory Unit stores the dataset in four
SDRAM modules, each with its own SRAM cache. The Trilinear Interpolation Unit is responsible for re-
sampling the dataset. It also interpolates the gradients at off-grid locations using eight parallel lookups to the

MERL-TR-99-17 April 1999



13

Control
Unit
(CU)

Address
Multiplexer

Volume Memory
M1 M2 M3 M4

Trilinear Interpolation Unit (TIU)
Sample and Gradient

Shade and
Composit Unit

(SCU)

r, g, b, α

Memory
Unit (MU)

Viewing Parameters

Figure 8:VIZARD II architecture.

quantized gradient table. The Shading and Compositing Unit supports look-up-based shading and multiple
classification tables. Final pixels values are transferred through the PCI bus to the host computer.

VIZARD II implements an image order algorithm that utilizes early ray termination. The algorithm first
preprocesses the dataset to compute gradient indices for each voxel. The gradient index contains 9 bits but
is not limited to 9 bits. Alternatively, the full gradient component could be stored with the voxel memory.
The 9-bit gradient index generates512 table entries. Using512 entries, the average error in the gradient
computation is2:3 degrees and the maximum error is7:9 degrees [44]. Larger gradient tables can be used
for greater accuracy. Four voxels (including gradient index) are simultaneously accessed in parallel. These
voxels are four-way interleaved with respect to the YZ-plane. A burst memory access is used to fetch adjacent
voxels in the X-direction. To access a2 � 2 � 2 trilinear neighborhood, four voxels (in the YZ-plane) are
accessed in parallel from each bank, and a sequential burst memory access from each bank provides the
remaining four values from an adjacent YZ-plane. These values are cached in separate cache banks to allow
parallel access and re-use.

The Interpolation Unit uses the fractionalx; y; andz components and the trilinear interpolation neigh-
borhood from the Memory Unit to re-sample the dataset. The gradient index is used to address the gradient
look-up table. The resultingx; y; andz gradient components are interpolated in a similar manner. The tri-
linear interpolation units can sustain samples at a rate up to four times faster than the rate of the memory
system if the desired voxels reside inside the cache. The sample throughput is enhanced by supersampling
the dataset because of a significant increase in cache hits.

The sample and gradient value are used in the Shading and Compositing Unit to classify and shade the
sample. The classification table is chosen using a classification index and the architecture handles segmenta-
tion and multiple cut-planes. Phong shading is implemented using a look-up table and compositing uses the
standard ”over” operator. Early ray termination is utilized to increase the frame rate.

5.5.2 Performance

VIZARD II supports multiple cut planes, segmentation, parallel, and perspective viewing. It is expected to
sustain a frame rate of10Hz. However, its worst-case performance is approximately1 frame per second.

MERL-TR-99-17 April 1999



14

Worst-case performance occurs for 1:1 mapping of samples to voxels and a transparent classification of the
dataset. Using four100MHz SDRAM devices, this architecture is capable of14� 106 samples per second
worst-case performance and56 � 106 samples per second best-case, assuming 4:1 mapping of samples to
voxels.

6 Performance Metrics

The performance of a volume rendering architecture is determined by several factors:

Frame Rate is the number of images that can be generated per unit of time and is measured in frames per
second (orHz).

Samples Processed Per Second (SPPS)is the number of filtered samples that can be generated per unit
of time. Unlike frame rate, SPPS is not sensitive to image and dataset resolution. SPPS is similar
to trilinear interpolated samples per second that is commonly used in the specification of 3D texture
mapping hardware.

Latency is the time between a change in dataset or viewing parameters and the display of the updated image.

Image quality is mainly a qualitative assessment that is related to the resolution of the generated images,
interpolation filter, gradient filter, and illumination models used.

Scalability is the ability of an architecture to extend its performance by increasing the amount of computa-
tional and memory throughput. Ideally, a linear increase in the number of rendering modules should
linearly increase an architecture’s frame rate or maintain its frame rate for a linear increase in dataset
size.

Although many architecture’s primary goal is to achieve high frame rates and SPPS, image quality may be
more desirable when visualizing static datasets. Frame rate and SPPS are indicators of the amount of ac-
celeration that is provided by the rendering architecture. One drawback to these metrics is that both are
proportional to the amount of bandwidth available to the architecture. This is undesirable since the archi-
tectures surveyed span several generations of memory technology. To address this problem, we introduce a
simple model that measures the ability of an architecture to convert voxel throughput (memory bandwidth)
into sample throughput. The model can be derived by accounting for changes in throughput along thepro-
cessing pathas a voxel is converted into a filtered sample. This leads to a relationship between peak memory
bandwidth and effective sample throughput. Sample throughput can be given by the following equation:

S sample

second

= B voxel
second

�

P
z }| {

U% �
1

V voxel
sample

(4)

whereS is performance measured in SPPS,B is the peak bandwidth of the memory system,U is the memory
bandwidth utilization (in percent), andV is the average number of voxels that need to be fetched per sample.
In this survey,B is held constant to compensate for advances in memory technology and for varying degrees
of parallelism among the different architectures.

U , memory bandwidth utilization, is the percentage of the peak memory bandwidth that is realized.
The product ofU andB is the sustained voxel throughput into the rendering components. For maximum
performance,U should be1:0. U accounts for any combination of random cycles, sequential cycles, and idle
time on the memory bus.U is given by:

U = w
r�C+(1�r) (5)

MERL-TR-99-17 April 1999



15

wherer is the percentage of all accesses that are random andw is the percentage of time that voxels are
transferred to rendering components (bus utilization).C is the speedup of a memory device obtained by
using sequential memory access (or burst access) instead of random access.C is a memory technology
dependent term. For example, assume a100MHz SDRAM memory (10ns synchronous access time) has
a 70ns random access time (including page faults). This leads to aC of 7:0 (i.e., 700%). In this case, if
all memory accesses are random(r = 1:0) and the memory bus is fully utilized(w = 1:0), the memory
bandwidth utilization,U , would be as low as14:3%. To account for the fact that not all random accesses are
page faults we assume that the memory bandwidth utilization is20% when the bus is fully utilized (w = 1:0)
with random accesses (r = 1:0). This is a conservative estimate for newer DRAM memories.

V is the average number of voxels that are fetched from memory per sample.V is related to the size of the
gradient and interpolation filter. For example, an architecture that uses a 32-voxel gradient filter could have
V = 32 using a brute force approach; however, if voxels and intermediate results are buffered efficiently,
V = 1 because access to buffered (or cached) voxels can occur in parallel with new voxel accesses. Some
architectures use algorithmic acceleration (e.g., early ray termination) to enhance performance. The reduction
in fetched voxels due to algorithmic speedup is view and dataset dependent. In our comparison, we assume a
reduction ofV by a factor of 3 when early ray termination has been implemented [22].

We call the term,P = U
V

in Equation 4,Sample Processing Efficiency. It is an architecture specific
measure of how peak memory bandwidth (B) translates to SPPS (S). If each voxel is accessed on average
once per filtered sample (V = 1:0) and the memory system is fully utilized (U = 1:0), then the sample
processing efficiency,P , will be 1:0. Sample processing efficiency may be larger than1:0 if compression is
used or if the volume dataset is super-sampled (i.e., multiple re-sample locations per unit volume). Sample
processing efficiency,P , is related to frame rate,F , by the following formula:

F frame

second

=
B voxel

second
� P sample

voxel

T sample

frame

(6)

B is the peak bandwidth of the memory system andT is the number of samples needed to render the frame.
Sample processing efficiency only measures the ability to convert memory bandwidth to processed samples;
it is relatively independent of memory technology and can therefore be used as an objective measure of archi-
tecture efficiency. However, it does not measure other important performance metrics such as image-quality,
cost, scalability, or latency. Since the architectures presented in this paper span several generations in VLSI
technology, it is difficult to augment the comparison with normalized cost. Consequently, we do not explicitly
compare cost or use a cost/performance ratio. However, it should be noted that these architectures will reach
a higher performance/price ratio than most interactive volume rendering options currently available.

7 Comparison

Table 3 presents a comparison of the five architectures. The categories include (1) status - the present stage of
development, (2) algorithm - type of ray casting algorithm used, (3) memory partitioning - the organization
of the memory system, (4) interpolation hardware - size, type, and/or implementation of the interpolation
filter, (5) gradient hardware - size, type, and/or implementation of the gradient filter, (6) shading - shading
algorithm supported, (7) perspective support - the ability to handle perspective projections, (8) real-time data
input - the potential to support real-time streamed input, (9) target technology - type of implementation, (10)
performance limitations - bottlenecks in the system, (11) scalability - the ability to scale performance using
multiple rendering pipelines, (12) algorithmic acceleration - early ray termination support, (13) sample pro-
cessing efficiency - normalized acceleration metric that also accounts for algorithmic speedup, (14) published
SPPS - performance numbers obtained from the respective publications, and (15) architectural highlights -
features considered important for next generation volume rendering architectures.

The VOGUE architecture supports three rendering modes based on its gradient computation kernel (8,
32, and 56 voxels). Voxels are re-fetched on average 8, 32, and 56 times for mode 1, mode 2, and mode 3,

MERL-TR-99-17 April 1999



16

Table 3: Architecture comparison.

VOGUE VIRIM Array Based EM-Cube VIZARD II
Ray Casting

Started 1993 1994 1995 1997 1998
Status Simulated System built Simulated ASIC in Simulated

development
Algorithm Image order Object order Object order Hybrid order Image order
Memory Eight-way Eight-way Orthogonal Skewed Four-way

Partitioning slice block
Interpolation Trilinear Programmable Nearest Trilinear Trilinear

Hardware neighbor
Gradient Three Modes 2D Sobel 26-voxel Central Quantized
Hardware (8/32/56 voxels) filter neighborhood differences gradient
Shading Phong Programmable Programmable Phong Phong

Perspective Yes Yes No No Yes
Projections
Real-time Moderately Difficult Easy Easy Difficult
Data Input Difficult

Target VLSI Off-the-shelf FPGA VLSI DSP/FPGA
Technology components
Performance Memory Bus Memory Memory Memory
Limitation
Scalability Moderate Hard Easy Easy Moderate
Early Ray Yes No No No Yes

Termination
P , Sample mode 1: 0.075 0.2 0.1 (m = 10) 0.95 0.075 (1:1 sampling)
Processing mode 2: 0.01875 (B = 200

MV oxels

second
) 1 (m = 1) 0.3 (4:1 supersampling)

Efficiency mode 3: 0.01071
Published SPPS 40� 10

6
40� 10

6
240 � 10

6
533� 10

6
56� 10

6

(one module) (m = 10) (4:1 supersampling)
Architectural High-quality Algorithmic Double- High Good

Highlight parallel and perspective flexibility buffering performance performance
rendering and shadows cost ratio

MERL-TR-99-17 April 1999



17

respectively. VOGUE can accommodate multiple point light sources with an unrestricted Phong illumination
model. Each module is memory limited and capable of40� 106SPPS performance in the fastest rendering
mode. Because of its random memory access pattern, VOGUE’s memory bandwidth utilization is20%. As
a result, VOGUE’s sample processing efficiency is between0:00357 (mode 3) and0:025 (mode 1) without
algorithmic acceleration. Assuming that an algorithmic speedup of 3 is realizable due to early ray termination,
the sample processing efficiency in Table 3 has been multiplied by3:0. In large multi-module configurations,
VOGUE’s sample processing efficiency per module may decrease due to network overhead.

Image quality is the primary focus of the VIRIM architecture. This architecture is capable a flexible illu-
mination model including shadows. VIRIM uses programmable DSPs that support other rendering, shading,
and interpolation algorithms. VIRIM is capable of40 � 106SPPS performance. Multiple engines can be
used to increase performance; however, each engine must duplicate the entire dataset. The object order algo-
rithm leads to no random memory accesses (r = 0:0). However, sample processing efficiency is limited by a
global bus between the re-sampling hardware and the rendering hardware. The sample processing efficiency,
P , is the ratio of the sustainable sample throughput of the bus between the Geometry and Ray Casting Units
and the peak voxel throughput of the memory system.P = 0:2 for 40MSample

second
bus bandwidth (VME bus) and

assuming the eight memory modules can sustain200MV oxel
second

. A new memory architecture was introduced
in [47] that enhances the memory bandwidth utilization; however, the voxel re-fetch factorV is increased.
This new memory system uses buffers and a pre-fetch mechanism to achieve a sample processing efficiency
of 0:125.

The Array Based Ray Casting architecture strives for high performance. It uses slice-by-slice processing
to render the dataset. The two arrays used in this architecture are a 2D array of processing elements. In
FPGA implementations, feedback paths in the larger Ray Array limit the maximum clock speed. The double-
buffered memory offers support for real-time data input. The architecture is fully pipelined and parallel and
uses only local communication. However, the hardware required to implement the two arrays scales with
O(n2), wheren is the dimension of the volume data. This architecture does not use interpolation leading
to lower image quality and does not support perspective projections. The performance of this architecture
is memory limited. In the full implementation, the Ray Array contains1:5n � 1:5n processing elements.
In this configuration, memory bandwidth utilization,U , is 1:0. However, one drawback is the size and cost
to implement theO(n2) Ray Array. One solution is to shorten the Ray Array (reduced columns) and to
re-use them multiple times per projection. In this smaller configuration, the memory bandwidth utilization
is inversely proportional to the number of times the Ray Array is shared. The sample processing efficiency,
P , is 1:0

m
, wherem is the number of times the Ray Array is re-used. Theoretically,m can be as large as

1:5n, wheren is the dataset resolution, greatly reducing the size of the ray array and severely limiting the
performance of the architecture.m can be assumed to lie be between1 and10 for practical implementations.
Using this assumption, this architecture has a sample processing efficiency of1 (best-case) and0:1 (worst-
case).m is a design parameter for this architecture based on target cost, size, implementation technology,
and performance.

EM-Cube is a highly optimized parallel rendering architecture and it was designed to render high-resolution
datasets at real-time frame rates on a PC or workstation. The skewed memory system and slice-parallel
processing allows EM-Cube to sustain a large memory bandwidth. EM-Cube uses memory skewing on
a block granularity. This reduces chip pin-out and communication costs. This architecture can sustain
533 � 106SPPS using four133MHz SDRAMs. During perspective projections certain view points may
adversely affect performance for hybrid order algorithms. As a result, EM-Cube does not support perspective
projections. EM-Cube uses central differences for gradient estimation which requires 32 voxels; however,
no performance penalty is incurred since EM-Cube uses on-chip storage to buffer sample values. Only local
communication between processing pipelines are used, therefore, EM-Cube is highly scalable. EM-Cube’s
memory utilization is1:0 because it can sustain synchronous memory accesses for each of its voxels. By pro-
cessing the dataset in sections, EM-Cube is able to significantly reduce on-chip storage [42]. Consequently,
EM-Cube’s average voxel re-fetch is increases slightly because some voxels on the boundary of a section
must be re-fetched from the memory system. EM-Cube’s average voxel re-fetch is1:05 for eight sections on

MERL-TR-99-17 April 1999



18

a256� 256� 256 dataset. As a result, EM-Cube’s sample processing efficiency is0:95.
VIZARD II uses three methods to reduce memory bandwidth requirements for interactive visualization:

9-bit quantized gradient, caching, and early ray termination. VIZARD II supports perspective viewing, mul-
tiple cut planes, and segmentation. The quantized central difference gradient requires preprocessing and
may degrade image quality when compared to traditional central difference gradients. In general, gradient
quantization can be used to support a wide range of gradient filters and the size of the gradient table can be
increased to enhance accuracy (i.e., image quality). The VIZARD II architecture has been simulated and is
still at the research stage. A maximum performance of56� 106SPPS performance can be achieved assum-
ing 4:1 supersampling of the dataset. Maximum performance is limited by the memory system. A worst-case
performance of14� 106SPPS occurs for 1:1 sampling of the dataset. The performance of this architecture
is memory limited. Since VIZARD II uses early ray termination, we assume that its algorithmic speedup is
3:0. VIZARD II’s average voxel re-fetch is8. The quantized central difference gradient prevents the voxel
re-fetch from being larger than the size of the trilinear interpolation neighborhood. Since VIZARD II’s mem-
ory system is clocked at20% of its maximum rate, its memory efficiency factor is0:2 assuming worst-case
(1:1 sampling). The cache memory and Trilinear Interpolation Units are clocked four times faster than the
rate of the memory system. When the dataset is 4:1 super-sampled or higher, a substantial increase in cache
hits increases the memory bandwidth utilization to0:8 best-case. This architecture has an overall sample
processing efficiency of0:075 (1:1 sampling) and0:3 (4:1 sampling) taking into consideration a threefold
speedup due to early ray termination.

8 Discussion

In each architecture, maximum performance is limited by either the memory system or global communica-
tion bottlenecks, such as buses or networks. Memory limitations are inherent to each architecture. Global
buses and networks arise because of the need to communicate voxel data or intermediate values over a com-
mon medium. The volume rendering algorithm and memory organization determine whether these potential
bottlenecks affect performance. Architectures that are only memory limited tend to be more scalable.

There is a tradeoff in most of the architectures between performance, quality, and hardware cost. VOGUE’s
different rendering modes present performance-quality tradeoffs. Practical implementations of the Array
Based Ray Casting and EM-CUBE architectures use slightly modified configurations from a fully parallel
design leading to performance-cost tradeoffs. On the other hand, VIZARD II trades performance versus im-
age quality by using a 9-bit quantized central difference gradient. VIRIM’s dataset duplication in the fully
parallel implementation illustrates performance-cost tradeoffs. Furthermore, we see general trade-offs be-
tween the different types of parallel rendering algorithms. Image order algorithms exhibit greater flexibility,
object order algorithms typically have higher sample processing efficiencies, and hybrid order algorithms can
have characteristics of both. The primary objectives of the volume rendering architect is to balance these
tradeoffs based on the target applications.

Of the surveyed architectures, EM-CUBE and VIZARD II are the only architectures still actively being
developed. The primary goal of these architectures is an interactive visualization system that will augment a
low-cost workstation or desktop computer. EM-Cube and VIZARD II will fit on a PCI card for a standard
PC. As such, both architectures are also designed to be low-cost.

Note that two of the three architectures (Array Based Ray Casting and EM-Cube) do not support per-
spective projections. Although perspective projections may have less importance in medical and scientific
visualization, perspective projections are necessary in virtual reality, volume graphics, and stereoscopic ren-
dering applications. A general purpose volume rendering solution must support both types of projections.

Volume rendering is useful in both scientific visualization and volume graphics. These two paradigms
do not have the exact same requirements. Scientific visualization is primarily parallel rendering with simple
illumination models; whereas, volume graphics requires greater rendering flexibility. EM-Cube addresses
many issues related to interactive scientific visualization. Although VIZARD II has lower performance, it

MERL-TR-99-17 April 1999



19

is a more general rendering architecture with support for perspective projections, multiple cut planes, and
segmentation.

9 Future of Special-Purpose Accelerators

Recently, interactive image generation rates have been achieved on medium resolution (i.e.,512� 512� 64)
datasets using 3D texture mapping (a forward-projection algorithm) [14]. One advantage of texture hardware
is that volumetric primitives can be mixed with geometric primitives. However, texture mapping hardware
does not readily support all aspects of volume visualization, such as per-sample gradient computation and
per-sample illumination. In addition, texture memory is usually limited. Volume rendering hardware encom-
passes texture mapping by including 3D filtering (trilinear interpolation and gradient filters) and very high-
bandwidth memory; thus, future volume visualization accelerators are likely to be used for high-performance
texture mapping. Texture memory is typically four-way (eight-way) interleaved (similar to VIZARD II’s and
VOGUE’s memory system) to allow conflict-free 2D (3D) re-sampling. A potential area of research is an
efficient memory organization that readily supports both volume rendering, texture mapping, and next gen-
eration memory technology. In addition, the ability to render both voxel and polygonal primitives in a single
projection for virtual reality should be considered.

The architectures surveyed represent the first generation of custom architectures that implement the ray
casting algorithm. These architectures primarily focus on high output frame rates. We believe the second gen-
eration architectures will address dynamic datasets or large input rates. Fast sampling devices and interactive
volume graphics will help promote this trend. Future interactive visualization systems may soon consist of
a special purpose accelerator card connected to a real-time data acquisition subsystem. In volume graphics
applications, it is expected that volume updates, volume animation, and voxelization will require input frame
rates comparable to output frame rates. Consequently, it may be necessary to parallelize voxel input into
the volume memory and the memory partitioning scheme in a given architecture may not necessarily be the
optimal partitioning scheme for both parallel voxel input and output. Also, double buffered volume mem-
ory (see Array Based Ray Casting) will be necessary to eliminate rendering artifacts and performance loss
when simultaneously loading and visualizing dynamic datasets. Furthermore, 3D double-buffering follows
the development of the traditional graphics pipeline (i.e., double-buffered frame buffer). These are areas for
additional research.

If volume graphics is to offset traditional polygonal graphics, volumetric raytracing [48] and perspective
projections must be considered. Raytracing is capable of producing photo-realistic images using shadows,
reflection, refraction, etc. For instance, VIRIM is capable of shadows. Secondary rays during raytracing
have less coherence than primary rays, therefore, volumetric raytracing may be better suited for image order
architectures. Ray casting architectures that rely on lock-step coherence between cast rays (i.e., Array Based
Ray Casting and EM-Cube) may have difficulty incorporating raytracing.

Memory throughput increased an order of magnitude (e.g., Direct Rambus) since most of the architectures
in this paper were first proposed. Advances in semiconductor technologies towards deep-submicron processes
will continue to promote higher logic speeds, higher memory density, as well as lower memory access times.
In addition, the ability to embed large amounts of memory on-chip with computational units will further
enhance memory throughput. All of these trends will simplify future volume rendering architectures, increase
their speed, and lower their cost. Furthermore, as these special-purpose accelerators evolve, software and
application-program interfaces (APIs) will be defined and developed [49, 50, 51]. They will provide the user
with more flexibility and additional features, such as stereoscopic views. The availability of low-cost real-
time hardware and industry strength APIs will increase the acceptance of volume visualization and volume
graphics. This will certainly lead to the development of new and exciting applications.

MERL-TR-99-17 April 1999



20

Acknowledgments

Special thanks to Meena Bhashyam for help reviewing the manuscript, and Michael Doggett, Christof Rein-
hart, Michael Meißner, and Gunter Knittel for their useful insight and correspondence regarding their archi-
tectures. This work was supported by the Office of Naval Research under grant number N00014-92-J-1252
and CAIP research center at Rutgers State university.

References

[1] R. Yagel, “Towards Real Time Volume Rendering,” inProceedings of GRAPHICON 1996 Saint-
Petersburg, Russia, July 1996, vol. 1, pp. 230–241.

[2] I. Bitter and A. Kaufman, “A Ray-Slice-Sweep Volume Rendering Engine,” inProceedings of the
Siggraph/Eurographics Workshop on Graphics Hardware, Aug. 1997, pp. 121–138.

[3] M. C. Doggett and G. R. Hellestrand, “Video Rate Shading for Volume Data,” inAustralian Pattern
Recognition Society Digital Image Computing : Techniques and Applications, Dec. 1993, pp. 398–405.

[4] S. M. Goldwasser, R. A. Reynolds, and T. Bapty, “Physician’s Workstation with Real-Time Perfor-
mance,”IEEE Computer Graphics and Applications, vol. 5, no. 12, pp. 44–57, Dec. 1985.

[5] D. Jackel, “The graphics PARCUM system: A 3D Memory Based Computer Architecture for Process-
ing and Display of Solid Models,”Computer Graphics Forum, vol. 4, no. 4, pp. 21–32, 1985.

[6] S. Juskiw, N. Durdle, V. Raso, and D. Hill, “Interactive Rendering of Volumetric Data Sets,”Computer
and Graphics, vol. 19, no. 5, pp. 685–693, 1995.

[7] A. Kaufman and R. Bakalash, “CUBE - An Architecture Based on a 3D Voxel Map,”Theoretical
Foundations of Computer Graphics and CAD, pp. 689–700, 1988.

[8] H. Pfister, Architectures for Real-Time Volume Rendering, Ph.D. thesis, State University of New York
at Stony Brook, Computer Science Department, Stony Brook, NY 11794-4400, 1996, MERL Report
No. TR-97-04.

[9] H. Pfister, A. Kaufman, and T. Chiueh, “Cube-3: A Real-Time Architecture for High-Resolution Vol-
ume Visualization,” in In1994 Workshop on Volume Visualization, Washington, DC, Oct. 1994, pp.
75–83.

[10] H. Pfister and A. Kaufman, “Cube-4 - A Scalable Architecture for Real-Time Volume Rendering,” in
Volume Visualization Symposium Proceedings, Oct. 1996, pp. 47–54.

[11] A. Kaufman, D. Cohen, and R. Yagel, “Volume Graphics,”IEEE Computer, vol. 26, no. 7, pp. 51–64,
July 1993.

[12] S. W. Smith, H. G. Pavy, and O. T. von Ramm, “High-Speed Ultrasound Volumetric Imaging System –
Part I: Transducer Design and Beam Steering,”IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 38, no. 2, pp. 100–108, 1991.

[13] O. T. von Ramm, S. W. Smith, and H. G. Pavy, “High-Speed Ultrasound Volumetric Imaging System –
Part II: Parallel Processing and Image Display,”IEEE Transactions on Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 38, no. 2, pp. 109–115, 1991.

[14] B. Cabral, N. Cam, and J. Foran, “Accelerated Volume Rendering and Tomographic Reconstruction
using Texture Mapping Hardware,” in1994 Workshop on Volume Visualization, Washington, DC, Oct.
1994, pp. 91–98.

MERL-TR-99-17 April 1999



21

[15] T. J. Cullip and U. Neumann, “Accelerating Volume Reconstruction with 3D Texture Mapping Hard-
ware,” in Technical Report TR93-027, Department of Computer Science at the University of North
Carolina, Chapel Hill, 1993.

[16] B. M. Hemminger, T. J. Cullip, and M. J. North, “Interactive Visualization of 3D Medical Image Data,”
in Technical Report TR94-027, Department of Radiology and Radiation Oncology at the University of
North Carolina, Chapel Hill, 1994.

[17] P. Lacroute, “Analysis of a Parallel Volume Rendering System Based on the Shear-Warp Factorization,”
IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 3, pp. 218–231, Sept. 1996.

[18] P. Schröder and G. Stoll, “Data Parallel Volume Rendering as Line Drawing,” in1992 Workshop on
Volume Visualization, Boston, MA, Oct. 1992, pp. 25–31.

[19] T. S. Yoo, U. Neumann, H. Fuchs, S. M. Pizer, T. Cullipand J. Rhoades, and R. Whitaker, “Direct
Visualization of Volume Data,”IEEE Computer Graphics and Applications, pp. 63–71, July 1992.

[20] A. Kaufman,Volume Visualization, IEEE Computer Society Press, 1991.

[21] L. A. Westover,Splatting: A Parallel, Feed-Forward Volume Rendering Algorithm, Ph.D. thesis, The
University of North Carolina at Chapel Hill, Department of Computer Science, jul 1991.

[22] M. Levoy, “Display of Surfaces From Volume Data,”IEEE Computer Graphics and Applications, vol.
5, no. 8, pp. 29–37, May 1988.

[23] J. Hesser, R. M¨anner, G. Knittel, W. Straßer, H. Pfister, and A. Kaufman, “Three Architectures for
Volume Rendering,” inProceedings of Eurographics ’95, Maastricht, The Netherlands, Sept. 1995,
European Computer Graphics Association, vol. 14, No. 3.

[24] P. Lacroute and M. Levoy, “Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing
Transformation,” inProceedings of SIGGRAPH ’94 (Orlando, Florida, July 24-29, 1994), Andrew
Glassner, Ed. July 1994, Computer Graphics Proceedings, Annual Conference Series, pp. 451–458,
ACM Press.

[25] R. Crisp, “Direct Rambus Technology: The Next Main Memory Standard,”IEEE Micro, vol. 17, no. 6,
Nov. 1997.

[26] R. Yagel and A. Kaufman, “Template-Based Volume Viewing,”Computer Graphics Forum, vol. 11,
no. 3, pp. 153–167, Sept. 1992.

[27] K. Höhne, M. Bomans, A. Pommert, M. Riemmer, C. Schiers, U. Tiede, and G. Wiebecke, “3D Visual-
ization of Tomographic Volume Data Using The Generalized Voxel Model,”The Visual Computer, vol.
6, no. 1, pp. 28–36, Feb. 1990.

[28] B. Lichtenbelt M. Bentum and T. Malzbender, “Frequency Analysis of Gradient Estimators in Volume
Rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 2, no. 3, pp. 242–254,
Sept. 1996.

[29] T. Möller, R. Machiraju, K. Mueller, and R. Yagel, “A Comparison of Normal Estimation Schemes,” in
IEEE Visualization Proceedings 1997, Oct. 1997, pp. 19–26.

[30] K. J. Zuiderveld,Visualization of Multimodality Medical Volume Data using Object-Oriented Methods,
Ph.D. thesis, Utrecht University, Mar. 1995.

[31] B. Phong, “Illumination for Computer Generated Pictures,”Communications of the ACM, vol. 18, no.
6, pp. 311–317, 1975.

MERL-TR-99-17 April 1999



22

[32] J. van Scheltinga, J. Smit, and M. Bosma, “Design of an On-Chip Reflectance Map,” inProceedings of
the 10th Eurographics Workshop on Graphics Hardware, Maastricht, The Netherlands, Aug. 1995, pp.
51–55.

[33] T. Porter and T. Duff, “Compositing Digital Images,”Computer Graphics, vol. 18, no. 3, July 1984.

[34] G. Knittel, “VERVE: Voxel Engine for Real-Time Visualization and Examination,”Computer Graphics
Forum, vol. 19, no. 3, pp. 37–48, Sept. 1993.

[35] G. Knittel, “A Scalable Architecture for Volume Rendering,”Computer and graphics, vol. 19, no. 5,
pp. 653–665, 1995.

[36] T. Günther, C. Poliwoda, C. Reinhart, J. Hesser, R. M¨anner, H.-P. Meinzer, and H.-J Baur, “VIRIM: A
Massively Parallel Processor for Real-Time Volume Visualization in Medicine,” inProceedings of the
9th Eurographics Hardware Workshop, 1995, vol. 19, No. 5, pp. 705–710.

[37] H.-P. Meinzer, K. Meetz, D. Scheppelmann, U. Engelmann, and H. J. Baur, “The Heidelberg Ray
Tracing Model,”IEEE Computer Graphics and Applications, pp. 34–43, Nov. 1991.

[38] M. C. Doggett, “An Array Based Design for Real-Time Volume Rendering,” in10th Eurographics
Workshop on Graphics Hardware, Aug. 1995, pp. 93–101.

[39] M. C. Doggett and G. R. Hellestrand, “A Hardware Architecture for Video Rate Smooth Shading of
Volume Data,” inEurographics Hardware Workshop, Sept. 1994, pp. 95–102.

[40] M. C. Doggett,Vizar : A Video Rate System for Volume Visualization, Ph.D. thesis, University of New
South Wales, 1996.

[41] H. Pfister, A. Kaufman, and F. Wessels, “Towards a Scalable Architecture for Real-Time Volume
Rendering,” inProceedings of the 10th Eurographics Workshop on Graphics Hardware, Maastricht,
The Netherlands, Aug. 1995, pp. 123–130.

[42] R. Osborne, H. Pfister, H. lauer, N. McKenzie, S. Gibson, W. Hiatt, and T. Ohkami, “EM-Cube: An Ar-
chitecture for Low-Cost Real-Time Volume Rendering,” inProceedings of the Siggraph/Eurographics
Workshop on Graphics Hardware, Los Angeles, CA, Aug. 1997, pp. 131–138.

[43] A. Kaufman and R. Bakalash, “Memory and Processing Architecture for 3D Voxel-based Imagery,”
IEEE Computer Graphics and Applications, vol. 8, no. 6, pp. 10–23, Nov. 1988.

[44] M. Meißner, U. Kanus, and W. Straßer, “VIZARD II: A PCI-Card for Real-Time Volume Rendering,”
in Proceedings of the Siggraph/Eurographics Workshop on Graphics Hardware, Lisbon, Portugal, Aug.
1998, pp. 61–67.

[45] G. Knittel, “A PCI-based Volume Rendering Accelerator,” inIn Proceedings of the 10th Eurographics
Workshop on Graphics Hardware, Aug. 1995, pp. 73–82.

[46] G. Knittel and W. Straßer, “VIZARD-Visualization Accelerator for Realtime Display,” inProceedings
of the Siggraph/Eurographics Workshop on Graphics Hardware, Aug. 1997, pp. 139–146.

[47] M. de Boer, A. Gröpl, T. Günther, C. Poliwoda, C. Reinhart J. Hesser, and R. M¨anner, “Latency-Free
and Hazard-Free Volume Memory Architecture for Direct Volume Rendering,” inProceedings of the
11th Eurographics Hardware Workshop, Poitiers, France, Aug. 1996, pp. 109–118.

[48] R. Yagel, D. Cohen, and A. Kaufman, “Discrete Ray Tracing,”IEEE Computer Graphics and Applica-
tions, vol. 12, no. 9, pp. 19–28, Sept. 1992.

MERL-TR-99-17 April 1999



23

[49] R. Grzeszczuk, C. Henn, and R. Yagel, “Advanced Geometric Techniques for Ray Casting Volumes,”
in SIGGRAPH 98 Course Nbr. 4, Orlando, FL, 1998.

[50] B. Lichtenbelt, “Design of A High Performance Volume Visualization System,” inSig-
graph/Eurographics Hardware Workshop, Aug. 1997, pp. 111–119.

[51] B. Lichtenbelt, R. Crane, and S. Naqvi,Introduction to Volume Rendering, Hewlett-Packard Profes-
sional Books. Prentice Hall PTR, 1998.

MERL-TR-99-17 April 1999


